Processing math: 100%
This is ericpony's blog

Tuesday, October 21, 2014

A note on the strong law of large numbers

I.i.d. r.v.s with zero mean

Consider a sequence of i.i.d. random variables X_0, X_1, .... When the variance is finite, the sequence S_0, S_1, ... of partial sums is expected to have a faster rate of convergence than the rate guaranteed by the Strong Law of Large Numbers (SLLN). In fact, we have the following theorem:

Theorem 2.5.1. If Var(X_n)<\infty and E[X_n]=0, then \lim_{n\rightarrow\infty} (S_n/n^p)=0 a.s. for all p>\frac{1}{2}.

This theorem can be proven using criteria of convergent series and the Borel-Cantelli lemma.

Indep. r.v.s with zero mean and finite sum of variance

It is possible to use a denominator with a slower growing rate than n_p. However, we will need a stronger assumption for the variances to ensure convergence without a divergent denominator.

Theorem 2.5.3. If \sum_{n\ge1} Var(X_n)<\infty and E[X_n]=0, then S_n converges a.s.

For sequences with E[X_n]\neq0, we can consider Y_n=X_n-E[X_n] instead of X_n. Note that Var(Y_n)=Var(X_n) and E[Y_n]=0. It then follows from the theorem that \sum Y_n=\sum (X_n-E[X_n]) converges a.s.

The ultimate characterisation of independent r.v.s with convergent partial sums is given by Kolmogorov.

Theorem 2.5.4. (Kolmogorov's Three-Series Theorem) Given independent \{X_n\} and a>0, define Y_n=X_n\cdot 1\{|X_n|\le A\}. Then S_n converges a.s. iff the followings all hold:
(i) \sum \Pr\{|X_n|>A\}<\infty, (ii) \sum E[Y_n]<\infty, and (iii) \sum Var(Y_n)<\infty.

Observe that \sum_{n\ge1}Y_n<\infty a.s by the 2nd condition. Also, putting the 3rd condition and Theorem 2.5.3 together leads to the fact that \sum_{n\ge1}(Y_n-E[Y_n]) converges a.s. Finally, \Pr\{X_n=Y_n for n large\}=1 by the 1st condition and the Borel-Cantelli lemma. Hence, we see that \sum_{n\ge1}X_n converges a.s. We need the Lindeberg-Feller theorem to prove the other direction.

Convergence of sequence is linked to the SLLN by the following theorem.

Theorem 2.5.5. (Kronecker's Lemma) If a_n\nearrow\infty and \sum_{n\ge1}b_n/a_n converges, then \sum_{n\ge1}^N b_n/a_N \rightarrow 0 as N\rightarrow\infty.

I.i.d. r.v.s with finite mean

The SLLN follows by Kolmogorov's Three-Series Theorem and Kronecker's Lemma.

Theorem 2.5.6. (SLLNIf E[X_n]=\mu, then S_n/n=\mu a.s.

Faster rate of convergence

We can prove a faster rate of convergence under stronger assumptions.

Theorem 2.5.7. Suppose that \{X_n\} are i.i.d., E[X_n]=0 and \sigma^2=E[X_n^2], then for all \epsilon>0, \lim\frac{S_n}{\sqrt n (\log n)^{1/2+\epsilon}}=0\quad a.s.The most exact estimate is obtained from Kolmogorov's test (Theorem 8.11.3): \lim\frac{S_n}{\sqrt n (\log \log n)^{1/2}}=\sigma\sqrt 2\quad a.s.
Theorem 2.5.8. Suppose that \{X_n\} are i.i.d., E[X_n]=0 and E[X^p]<\infty for 1<p<2. Then \lim S_n/n^{1/p}=0 a.s.

Examples

Example 2.5.3. Suppose \{X_n\} is indep. and \Pr\{X_n=\pm n^{-p}\}=1/2. Then p>1/2 iff S_n converges a.s. (Hint: use Theorem 2.5.4 and let A=1)

References

Rick Durrett. Probability: Theory and Examples. Edition. 4.1.

Friday, October 10, 2014

A note on the Riemann integral of sin(x)/x

In this post, we will prove the famous result that \int_{0}^{\infty}\frac{\sin x}{x}dx=\frac{\pi}{2}. We first fix some 0<a<\infty and consider e^{-xy}\sin x. We shall show that e^{-xy}\sin x is integrable on 0<x< a and y>0. As \left|\sin x\right|\le1, one may instead try to prove the integrability of e^{-xy} for this purpose. Unfortunately, the attempt would fail since \int_{0}^{a}\int_{0}^{\infty}e^{-xy}\,dy\,dx=\int_{0}^{a}\frac{1}{x}dx=\infty diverges. Bounding e^{-xy}\sin x with e^{-xy} turns out to be too rough near x=0, because 1/x\rightarrow\infty but \sin x/x\rightarrow1 when x\searrow0. We therefore need to use a tighter bound near x=0 to make the integral finite. Observe that, since \sin x/x\rightarrow1, given \varepsilon>0 there exists \delta>0 such that \left|\sin x/x-1\right|< \varepsilon for 0< x< \delta. Hence, \begin{eqnarray*} \int_{0}^{a}\int_{0}^{\infty}e^{-xy}\sin x\,dy\,dx & = & \int_{0}^{\delta}\int_{0}^{\infty}e^{-xy}\sin x\,dy\,dx+\int_{\delta}^{a}\int_{0}^{\infty}e^{-xy}\sin x\,dy\,dx\\ & \le & \int_{0}^{\delta}\frac{\sin x}{x}dx+\int_{\delta}^{a}\frac{1}{x}dx\\ & \le & \left(1+\varepsilon\right)\delta+\ln a-\ln\delta < \infty. \end{eqnarray*} Similarly, \int_{0}^{a}\int_{0}^{\infty}e^{-xy}\sin x\,dy\,dx \ge \left(1-\varepsilon\right)\delta-\ln a+\ln\delta > -\infty. It follows that the integral indeed exists. Now we can perform the double integral in two orders to obtain \int_{0}^{a}\left(\int_{0}^{\infty}e^{-xy}\, dy \right)\sin x\, dx=\int_{0}^{a}\frac{\sin x}{x}dx and \begin{eqnarray*} \int_{0}^{\infty}\left(\int_{0}^{a}e^{-xy}\sin x \, dx \right) dy & = & \int_{0}^{\infty}\left(\dfrac{1}{y^{2}+1}-\dfrac{\left( \cos a + y\,\sin a \right)e^{-ay}}{y^{2}+1}\right) dy \\ & = & \frac{\pi}{2}-\cos a\int_{0}^{\infty}\frac{e^{-ay}}{1+y^{2}}dy-\sin a\int_{0}^{\infty}\frac{y\,e^{-ay}}{1+y^{2}} dy \end{eqnarray*} Hence, \begin{eqnarray*} \left|\int_{0}^{a}\frac{\sin x}{x}dx-\frac{\pi}{2}\right| & = & \cos a\int_{0}^{\infty}\frac{e^{-ay}}{1+y^{2}}dy+\sin a\int_{0}^{\infty}\frac{y\,e^{-ay}}{1+y^{2}}dy\\ & \le & \int_{0}^{\infty}\left(1+y\right)e^{-ay}\, dy\\ & = & a^{-2}+a^{-1}. \end{eqnarray*} By taking a\rightarrow\infty we obtain the desired result.
You can find different proofs of the same result here. Besides, this thread shows why \sin{x}/x is Riemann integrable but not Lebesgue integrable on (0,\infty).

Related Posts Plugin for WordPress, Blogger...